
*"Improved Water Allocation for Agriculture in the Arab Region"*Technical meeting
26-27/09/2022

Water Accounting

Dr. Salvadore Elga

We cannot plan and manage what we do not measure

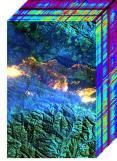
What is Water Accounting?

What can I do with Water Accounting? How can WA+ support IWRM?

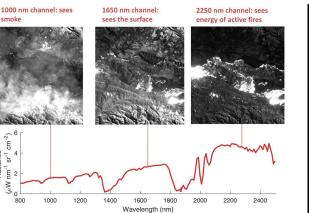
What types of Water Accounting Systems exist? The WA+ is a WA system based on Remote Sensing data

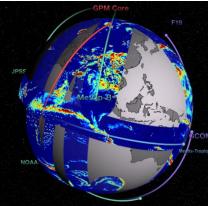
Examples

Data alone is not sufficient for effectively manage water resources



769 160 161	30/10/2008		Boeng Nav	<u>ທາສອັກອັກສ</u> າ	Teuk Chhar Reservoir	មាងទីក និងប្រព័ន្ធសោយស្រព	03130449	521112	1347610		na	1995
	29/10/2008	Prev Chhor		សាង ទីកាជងា	Throor Dar Beservoir	អាងទឹក និងប្រព័ន្ធស្រោះស្រា	03130458	520130	1349090	M	1976	1999
	05042016	Prev Chhor		អាងទីកអណ្លូងអាង	Andouna Ana Reservoir	អាងទឹក នឹងប្រព័ន្ធស្រោងស្រព	03130479	527616	1339860	M	1976	2015
162	17/06/2009	Prev Chhor		ទំនប់មាងទឹក ទូគីង	Treung Reservair	អាងទឹក និងប្រព័ន្ធស្រោបស្រព	03130733	538230	1331320	M	1976	2006
163	30/06/2009			ข้อบ หองห์กัด	Tumnup Anlong Ampil	អាងទឹក នឹងប្រព័ន្ធផ្សោយស្រព	03130734	531948	1339630	M	1975	2005
164	051122010	Prev Chhor	Thma Pun	មានទឹកមុនខេ	Mok Wat Beservoir	អាងទីក នឹងប្រព័ន្ធសោយស្រព	03131050	526418	1342550	M	1976	2003
165	19/05/2016	Prey Chhor	Trapeang Pre-	មាងទឹកភូមីដូង	Phum Doung Reservoir	អាងទឹក នឹងប្រព័ន្ធស្រោះស្រា	03131052	529982	1335980	M	1975	2015
166	1902/2010	Prev Chhor		អាងទីកទន្លេអ៊្	Tonle Um Reservoir	មាងទីក នឹងប្រព័ន្ធស្រោចស្រា	03131103	522668	1336600	M	1976	2008
167	30/11/2010	Prev Chhor	Krouch	មាងទីកក្រពាំងអំពីល	Trapeang Ampil Reservoir	អាងទឹក នឹងប្រព័ន្ធស្រោះស្រា	03131104	522781	1345030	M	1977	2005
168	14/11/2010	Prev Chhor	Trapeang Pres	មាងទឹកកោះស្នាយ	Koh Svay Reservoir	អាងទឹក នឹងប្រព័ន្ធផ្សោយស្រព	03131107	536058	1336260	M	1976	2006
169	17172010		Trapeang Pre-		Phnom Pot Reservoir	អាងទីក នឹងប្រព័ន្ធស្រាះស្រា	03131109	535121	1339710	M	1976	2004
170	2771122010	Prev Chhor	Samraong	ទំនប់ប្រាំងថ្មី	Tumnup Brang Thmei	អាងពន្ល័យទីក	03131152	515687	1328000	M	1959	1977
171	16/05/2015	Prev Chhor	Mien	ទំនប់ថ្នាយព្រឹក	Phkai Preuk	អាងស្តុកទឹក	03132455	534649	1330090	S	1976	n.a
172	15/05/2015	Prev Chhor	Mien	ອ້ຂະບິເຫຼາຍ	Phou	មានបន្តិចទឹក	03132457	534587	1329690	S	na	na
173	1405/2015	Prey Chhor	Trapeang Pres	ទំនប់ខ្យែង		មាងស្តួកទឹក	03132461	532141	1334770	S	1971	2012
174	27/04/2015	Prey Chhor	Sour Seen	ទំពល់ព្រះពាំងខ្មោត	Trapeang Throot	អាងស្នកទឹក	03132463	514281	1334810	S	1960	1997
175	14/05/2015	Prev Chhor	Trapeang Pre-	ទំនប់ទ្រពាំងរាំង	Trapeang Reang	អាងស្នកទឹក	03132464	532696	1335190	M	1976	2010
176	07/07/2016	Prey Chhor		ទំនប់អាងទឹកដើមផ្លែង	Deum Stena Reservoir	អាងស្នកទឹក	03132793	533218	1328449	S	1976	n.a
177	07/07/2016	Prey Chhor	Mien	ទំនប់អាងទឹកកន្លែងបក	Kanleng Chork Reservoir	មាងស្តួកទឹក	03132794	534673	1328429	S	1976	2006
178	15/05/2016	Prey Chhor	Mien	ะกศุล	TaKod	អាងទឹក នឹងប្រព័ន្ធស្រោះស្រព	03132906	530903	1327819	M	1976	2015
179	14/05/2016	Prey Chhor			Rolom Po	អាងទឹក និងប្រព័ន្ធណេដស្រា	03132908	534413	1326332	M	1976	2015
180	06/11/2008	Srei Santho	Pram Yam	ទំនប់ស្តីង រីប្រាំសាម	Tumnup Stung or Tumnup Pran	អាងពន្ល័ចទីក	03140495	513283	1307100	M	1950	1998
181	12/12/2010	Srei Santho		ទំនប់បឹងស្លាប	Tumnup Beung Sdol	អាងពន្ល័ចទឹក	83141136	508920	1306040	M	1995	na
182	2712/2010	Srei Santho	Preaek Rumde	98669 <mark>คัญ</mark> คัญ	Turnnup Charn Lok Charn	អាងពន្ល័យទឹក	83141137	526889	1310240	S	1978	na
183	1912/2010	Srei Santho		ទំនប់ជំឡូកបាស់	Turnnup Charn Lok Chas	មានពន្ល័យទីក	03141138	524872	1309450	M	1965	na
134	1912/2010	Srei Santho	Tong Tralach	ទំនប់បឹងថ្កាស	Tumnup Beung Thkash	អាងពត្ត័ធទ័ក	03141144	515662	1299260	M	1960	n.a
185	15/02/2012		Ruessei Srok		Anlong Sleng Reservoir	អាងទឹក នឹងប្រព័ន្ធស្រោះស្រា	83141170	522707	1314770	M	1976	2008
196	20/02/2012	Srei Santho	Baray		Bay De	អាងទឹក នឹងប្រព័ន្ធសោចស្រព	03141203	519608	1306100	M	1976	1995
197	15012012	Srei Santho			Broseung Reservoir	អាងបន្តួចទឹក	03141205	514120	1298470	M	1970	2003
168	16/03/2012	Srei Santho	Khnar Sa		Koun Kaek Reservoir	អាងទីក និងប្រព័ន្ធស្រោយស្រព	03141208	505804	1299550	M	1969	1996
189	15/02/2012	Srei Santho	Kaoh Andaet	មាងទីកម្មអណ្ដូង ពឹងអូមើង	O Andoung and O Veng	អាងទឹក និងប្រព័ន្ធណេចស្រព	03141211	527377	1316970	M	1975	n.a
190	17/02/2012	Srei Santho	Pteah Kandal		Prek Lvea Chey	អាងទឹក និងប្រព័ន្ធរស្រាចស្រព	03141213	516180	1312260	M	1971	2003
191	18402/2012	Srei Santho	Preask Pou	មាងទឹកប្រឡាឃីព្រៃកពោធ់ (ស្ថានីយ៍បូមទឹក៣០,៣០,៣២, ៣៣)	Prek Po (Pump Station 30, 31, 32, 33)	ប្រឡាយស្រោះស្រា និងស្ថានីឃំបូមទីក	03141214	512309	1308600	м	1977	2001
192	17/02/2012	Srei Santho		មាងទីការភូព	Ronouth Reservoir	មាងស្នកទឹក	03141215	514183	1304900	м	1969	2011
193	28/03/2016	Srei Santho	Preaek Rumde	ទំនប់អន្លែងបបុស្ត	Kanleng Bobos	អាងពន្ល័យទីក	03142669	527630	1306469	S	na	2014
194	27/03/2016	Srei Santho	Preaek Rumde		Beeung Khtum	មាងស្តួកទឹក	03142670	527369	1311553	м	na	2007
195	29/03/2016	Srei Santho			Prek To Teung	អាងទីក និងប្រព័ន្ធស្រោយស្រព	03142671	507000	1307176	S	1975	1997
196	01/04/2016	Srei Santho	Pram Yam		Mouk Phum	អាងទឹក និងប្រព័ន្ធស្រោះស្រា	03142672	517477	1304622	M	1976	2007
197	0404/2016	Srei Santho	Kaoh Andaet	ទំនប់អូរវាំង	O Reana	អាងទឹក នឹងប្រព័ន្ធស្រោចស្រព	03142673	528541	1317347	S	1976	2006


Have decision makers access to the necessary data?


Can decision makers work with these datasets?

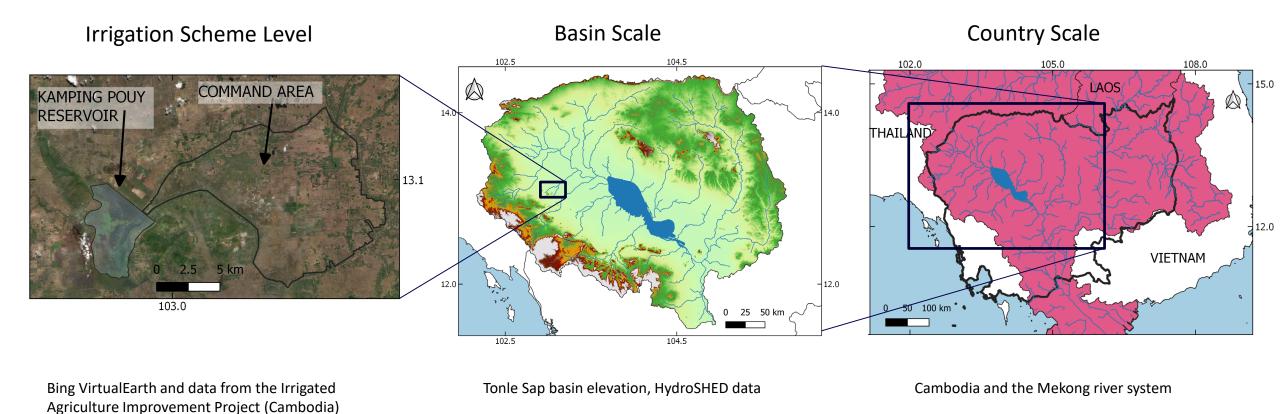
Are these datasets alone sufficient for making water allocation plans?

False color image from AVIRIS data cube acquired on Dec 5 2017. The front face shows: (red) active fires at 2250 nm; (green) surface at 1650 nm; and (blue) smoke at 1000 nm.

What is water accounting?

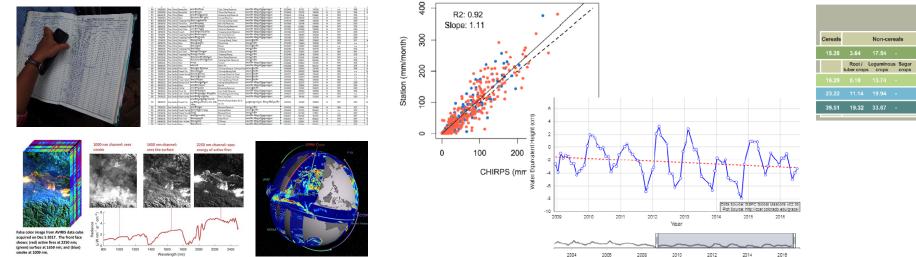
Water accounting is a tool to support decision making Name comes from financial accounting Identification and tracking of sources of revenue and expenses

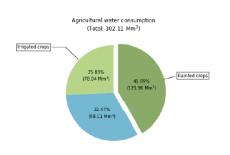
"Water Accounting makes sense of how much water is available and how to use it"


"Water Accounting is the systematic quantitative assessment of the status and trends in water supply, demand, distribution and accessibility"

Definitions from: FAO, Water Accounting for Water Governance and Sustainable Development

Reporting system to translate data to useful information


Water Accounting analyses water resources and their use in a specific geographical domain



Water Accounting uses a three-step approach

What is Water Accounting?

What can I do with Water Accounting?

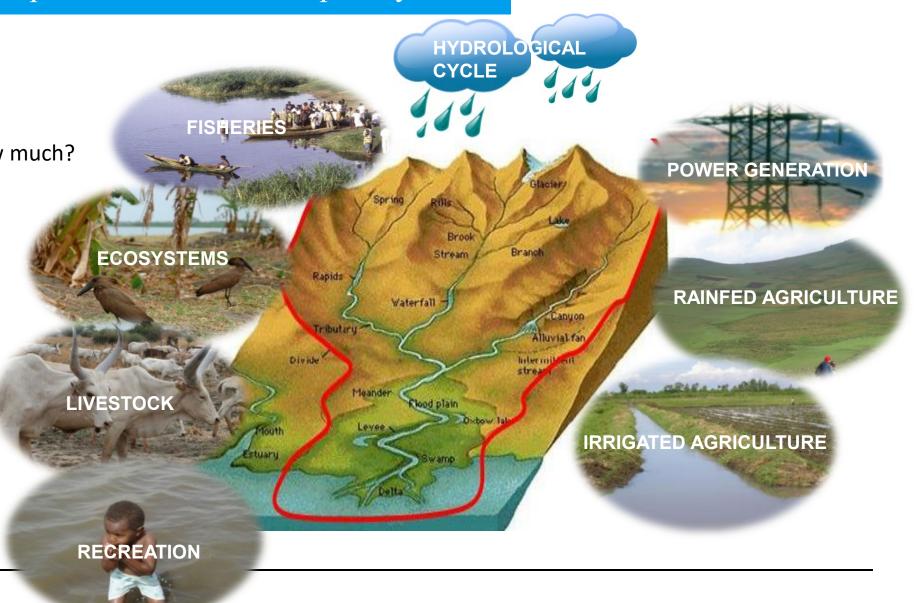
How can WA+ support IWRM?

What types of Water Accounting Systems exist?

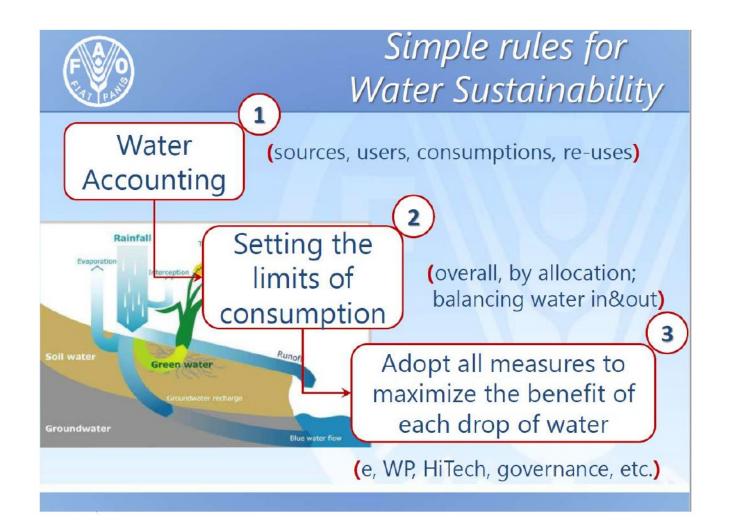
The WA+ is a WA system based on Remote Sensing data

Examples

Water Accounting: A simple idea to track a complex system

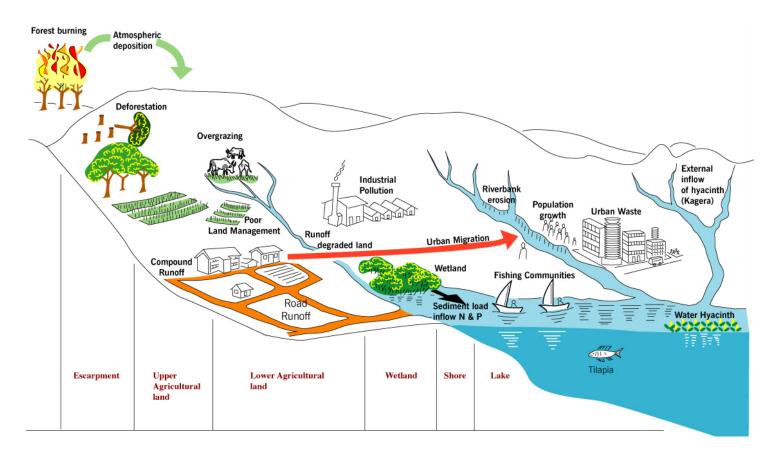

How much is the water use?

Which sector is consuming how much?


Demand vs. Supply

Availability driven by the hydrological cycle and infrastructure

Consumptive Non-consumptive use



Water Accounting: A simple idea to track a complex system

Integrated Water Resources Management

All water flows are embedded in drainage basins

creating interdependencies between uses and users

Global water partnership (2000) defines IWRM -

"IWRM is a process, which promotes the coordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystem."

IWRM

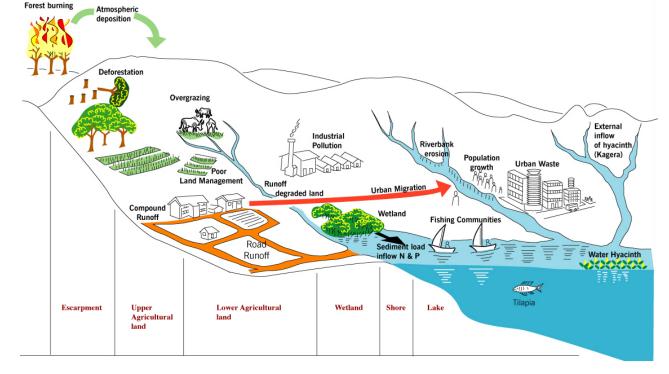
- Water Resource Management of a river basin requires monitoring
 - water availability and
 - water demand
- To monitor water availability and demand:
 - Accurate identification and delineation of catchment and river channels
 - Characteristics of the basin soil and vegetation, lakes and reservoirs, aquifer/groundwater storage
 - domestic, agricultural, and industrial within the basin
- Organized data and information at river basin level are key factor in order to implement Integrated Water Resource Management

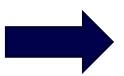
Water Accounting: A multi-stakeholders platform

Water managers Farmers Irrigation specialists Mayors Lawyers Energy utilities Environmentalists Industry representatives

Loucks, Daniel, P.; van Beek, Elco. Chapter 11 Water Resources Systems Planning and Management: An introduction to Methods, Models and Applications (https://ecommons.cornell.edu/handle/1813/2997)

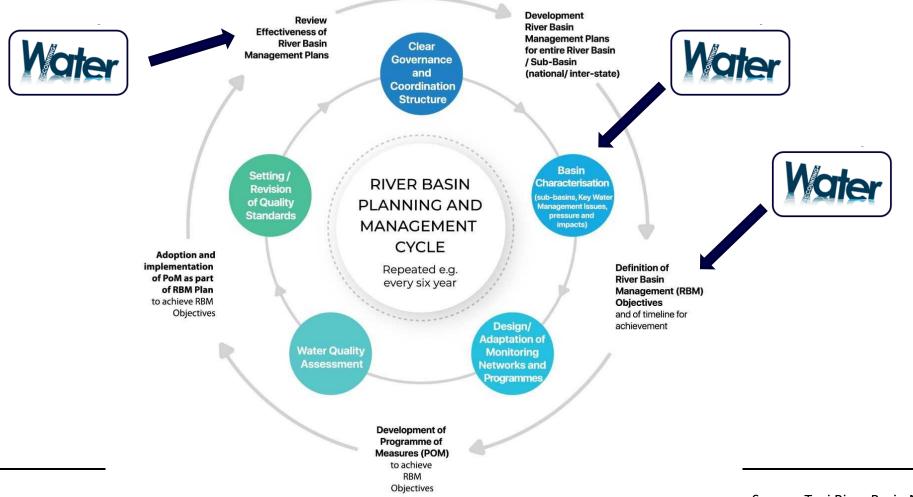
Data Democracy


Standardized Framework


River basin reports

Data requirements

- To manage water resources you need to know
 - How much water is available
 - How much is being used and by which sector
 - Where is the water used
 - How efficient is water being used



Requiring spatial disaggregated data on water availability and utilisation

Water Accounting is a tool for long-term planning

Source: Tapi River Basin Management Plan

What is Water Accounting?

What can I do with Water Accounting? How can WA+ support IWRM?

What types of Water Accounting Systems exist?

The WA+ is a WA system based on Remote Sensing data

Examples

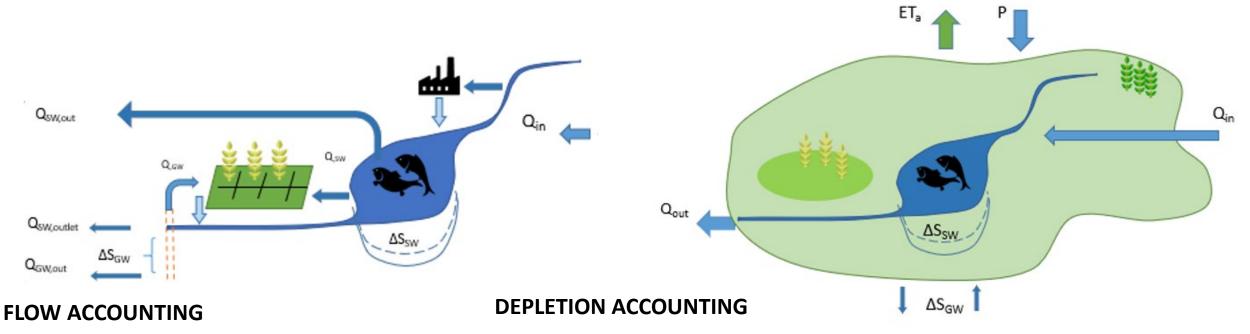
Main Differences between WA frameworks

Scale of application

Type of data used

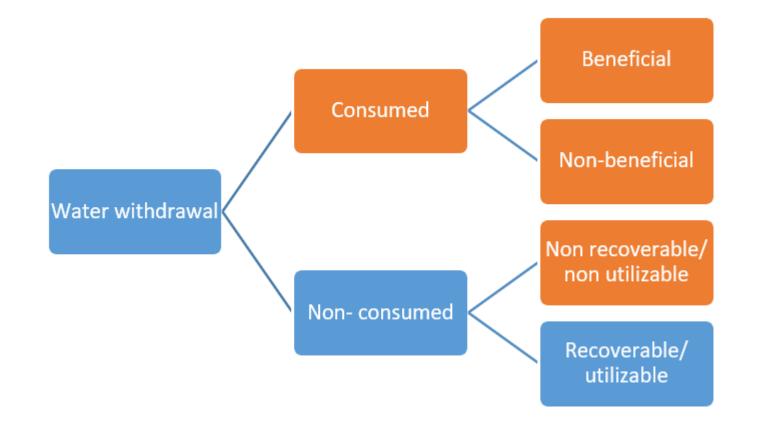
Overall approach: what are they tracking and how

Main Categories of WA frameworks

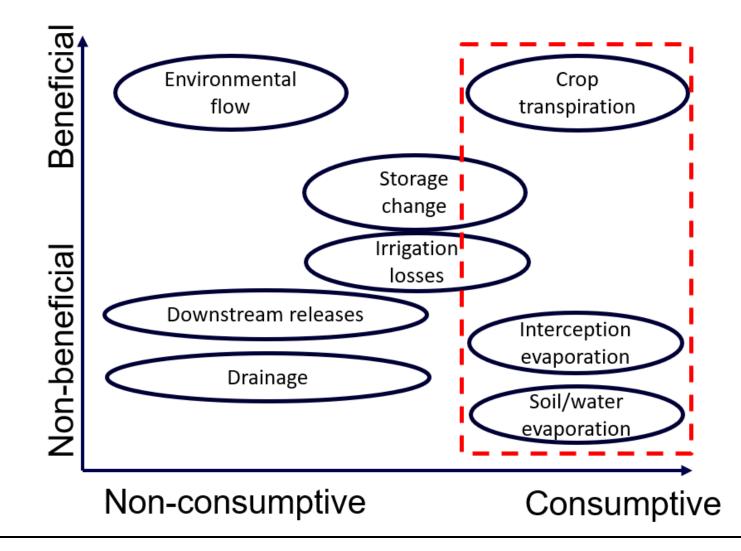

Two main categories:

FLOW ACCOUNTING: tracking and accounting actual flows, deliveries, and abstractions

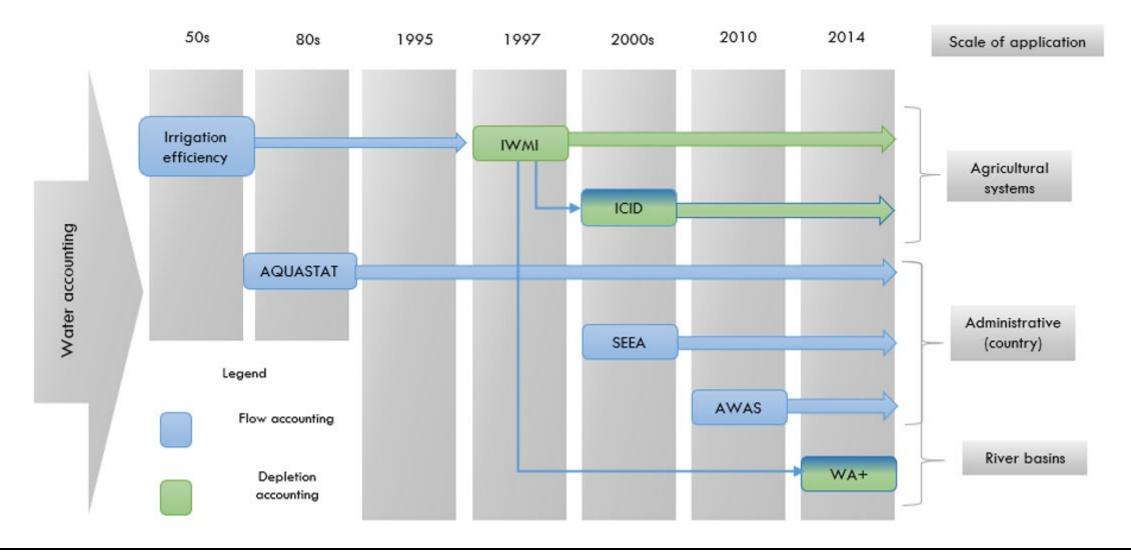
focusing mostly on blue water in cross-sectoral context


DEPLETION ACCOUNTING: focusing on water consumption with a landscape prospective

depleted water: ET, sinks, water in products


Consumptive use of water

Depletion accounting can also include the concept of **non-recoverable** or **non-utilizable** water



Examples of consumptive use of water

History of Water Accounting Frameworks

Use of remote sensing data, open source models and global datasets

Advantage for us:

data is available near-globally

data is available in a predictable manner

Advantage for stakeholders:

accounts are reproducible, based on open source code and data

Opportunities and limitations for using RS data for WRM&P

- In last decade reliability of RS data for WRM has improved significantly
- Continuous data set for various water resources related data sets (P, ET) for 10+ years
- Provides estimation of water consumption of largest water user (agriculture)
- Provides spatial information

But

- Need for adjusting hydrological models for incorporating water consumption data
- Requires ground validation data
- Long time series missing (>30 year) needed for trend analyses
- Methodology for scenario assessments (eg climate change etc) to be developed
- Water quality not well presented

Hydrol. Earth Syst. Sci., 17, 2459–2472, 2013 www.hydrol-earth-syst-sci.net/17/2459/2013/ doi:10.5194/hess-17-2459-2013 © Author(s) 2013. CC Attribution 3.0 License.

Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements

P. Karimi^{1,2}, W. G. M. Bastiaanssen^{2,3}, and D. Molden⁴

¹International Water Management Institute, Battaramulla, Sri Lanka

²Faculty of Civil Engineering and Geosciences, Water Management Department, Delft University of Technology,

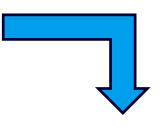
Delft, The Netherlands

 \odot \odot

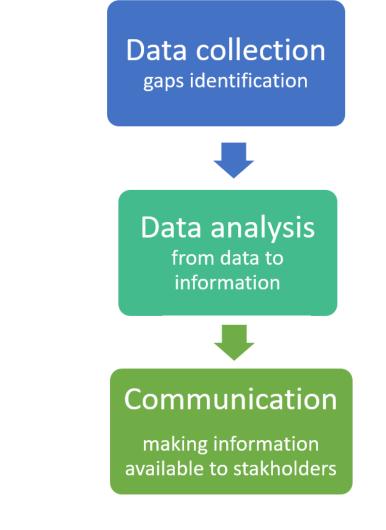
³eLEAF Competence Centre, Wageningen, The Netherlands

⁴International Centre for Integrated Mountain Development, Kathmandu, Nepal

Internationa Water Management Institute



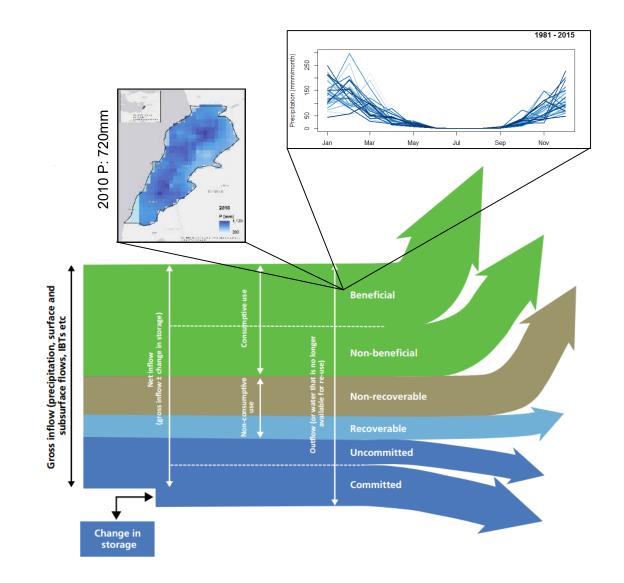
RESEARCH PROGRAM ON Water, Land and Ecosystems



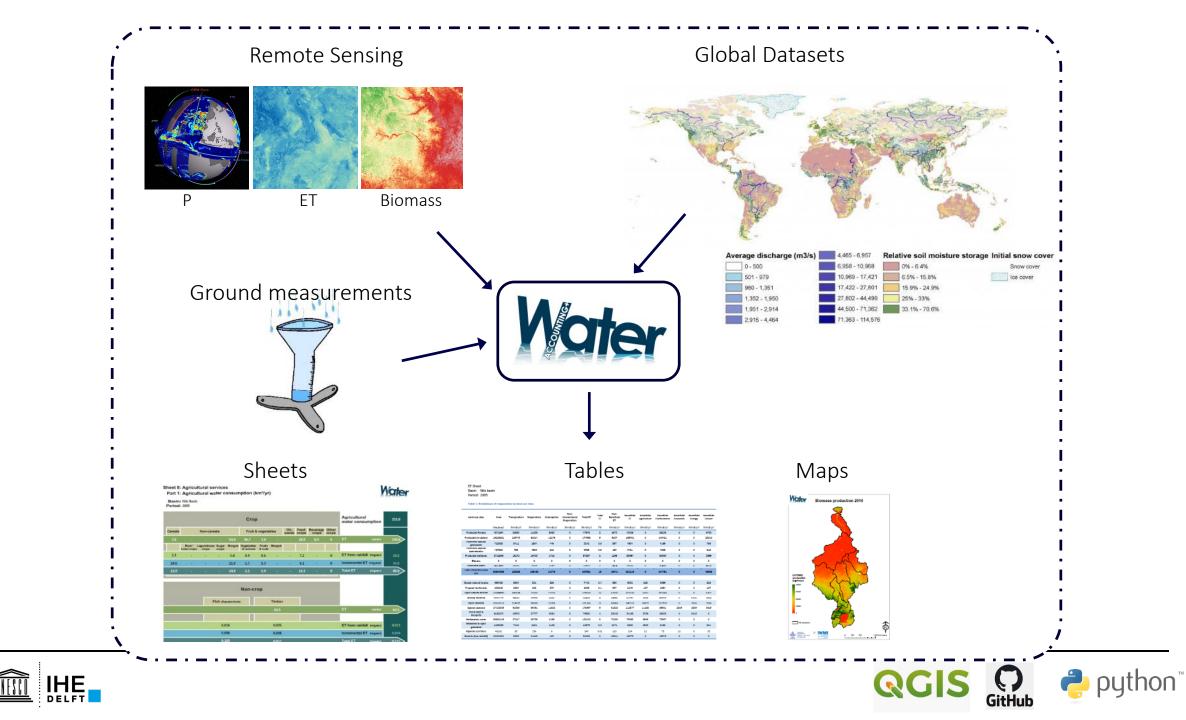
Water Accounting Plus (WA+)

Developed by IHE Delft in partnership with IWMI and FAO

- Geographical domain: river basin
- Combination of flow and depletion accounting
- Data acquisition
 - Open access spatial data bases and remote sensing data
 - Other open access data and information
 - Validated using ground observations and literature values
- Data analyses
 - Standardized analyses
 - Using open access programming tools and scripts (python, QGIS)
- Reporting
 - Standardized sheets, maps, tables and graphs

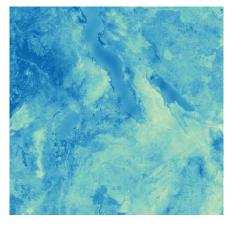

Water Accounting Plus (WA+)

WA+ attempts to make WA

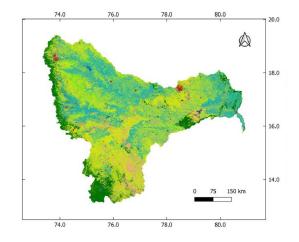

scalable

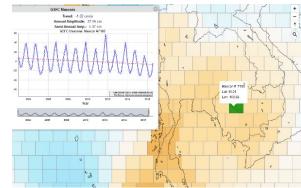
spatially explicit

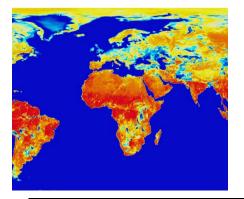
temporally detailed



Water Accounting Plus (WA+): using RS for water resources management

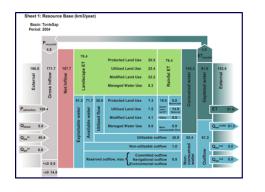

Rainfall

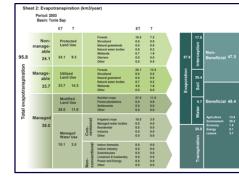

Evapotranspiration


Land use

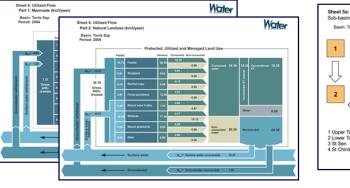
Groundwater

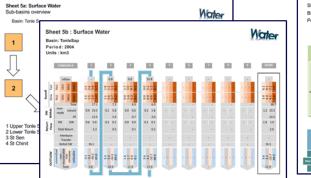
Soil Moisture

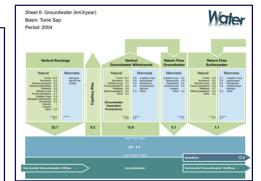



Water Levels

Rainfall, GPM: NASA Goddard Space Flight Center from Greenbelt, MD, USA [Public domain] Evapotranspiration, and biomass WaPOR: FAO, IHE-Delft.WaPOR quality assessement Soil Moisture, SMAP: NASA/JPL-Caltech/GFSC. <u>https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA18057</u>


Water Accounting Plus (WA+)





Part 1: Agricultural water cone Basin: Tonle Sap Period: 2004					Land p Tonle	roductio		'halyr)	and w	ater pro	ductivi	ty (kg/	m3)					
										Cro	р							
Cereals		Non-ce	reals		Cereals		Non-cer	reals		Fruit	& vegeta	bles	Oil- seeds	Feed crops	Beverage crops	Other crops		
					3687						11884			2212			Yield	rainfo
	Booki	Leguninou	a factor Mar	Land product ivity													Yield from rainfal	
	tuber crops		crops		1292						2502							> irrigan
					5353					•	12991						Total yield	
1.48						Root / fuber crops	Leguminous crops	a Sugar crops	Morgod	Vegetables & melons	Fruits & ruits	Merged						
	_	_		Water	0.50						0.95			0.80			WP	rainfe
				product-													WP from rainfall	1
_				ivity.	1.11						1.31					-	Incremental WP	> irrigan
			_		0.66						1.09						Total WP	
			Fish (Aqueca 1.08	Land product- ivity		27	Livestock	-		_	-crop Fish (Aq	uaculture) 818			Timber		Yield Yield from rainfal Iocromental yield Total yield	rainte } inique
						West		Mik										
						0.13						.37					WP	rainfo
			•	Water product-													WP from rainfall	
			_	ivity													Incremental WP	hinget
																	Total WP	

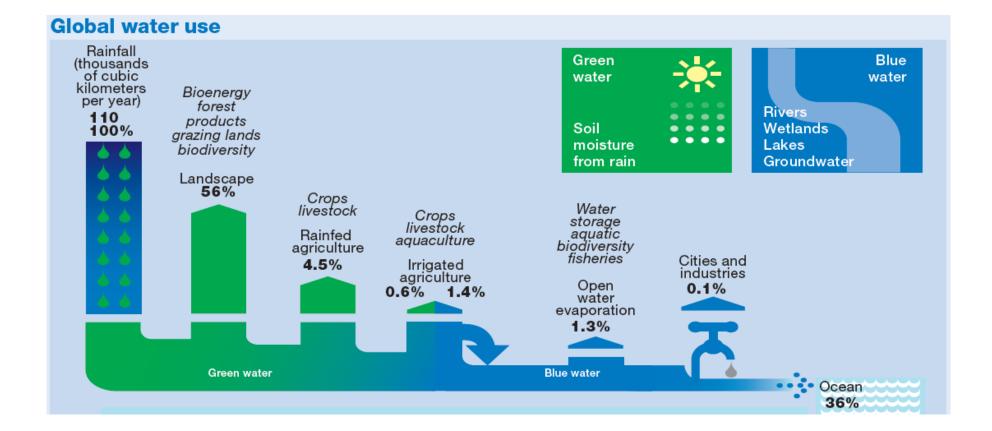
Finger diagram \rightarrow thematic accounting sheets

Water Accounting Plus (WA+): river basin management options

- Modify water flows
 - Diversions
 - Retentions
 -
- Modify land use practices
 - Cropland
 - Urban
 - Forests
 -

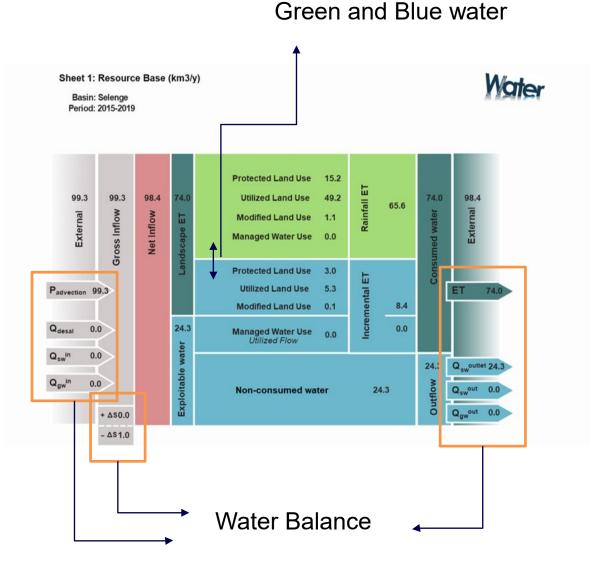
Protected Land Use

Utilized Land Use


Modified Land Use

Managed Water Use

Water Accounting Plus (WA+): concepts of green and blue water

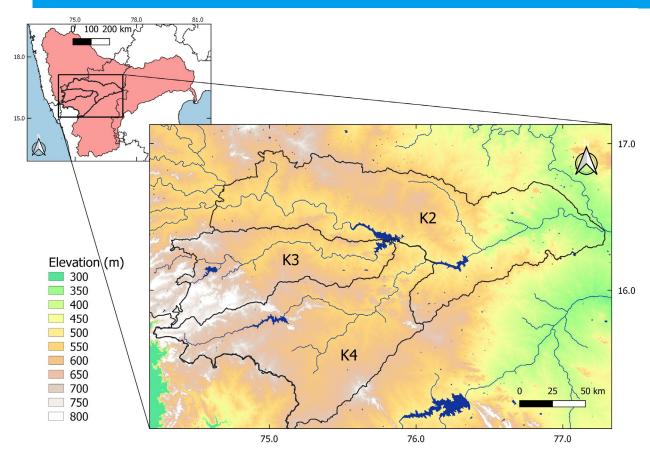


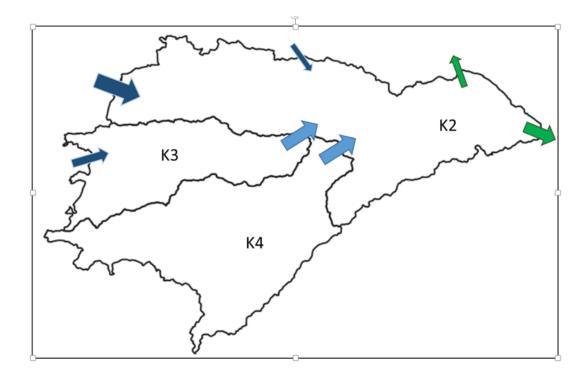
WA+: Sheet 1 Resource base

General overview at river basin scale of water availability vs water consumption exploitable flows manageable vs unmanageable flows over-exploitation

green and blue water

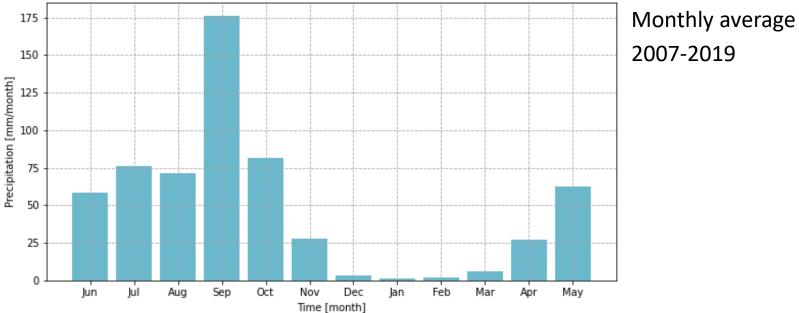
Examples of the application of WA+ in India


Results from a recent ADB funded project

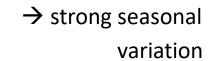


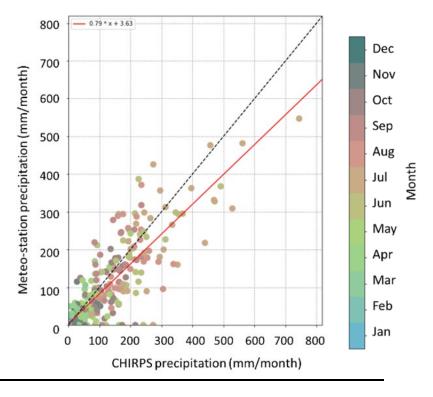
Case Study: 3 Krishna sub-basins in Karnataka

Sub-basin	Area in	% area of Krishna		Average elevation	Average yearly rainfall (mm/yr),
	Karnataka (km²)	basin in Karnataka		(m) (min and max)	CHIRPS (2006-2018)
K2: Middle Krishna	15,829	13.93%		530 (308-796)	594
K3: Gatprabha	6,833	6.02%		633 (484-1024)	714
K4: Malprabha	11,780	10.38%		627 (167-1022)	671
Total:	34,442	30.33%	Average:	583 (167-1024)	644

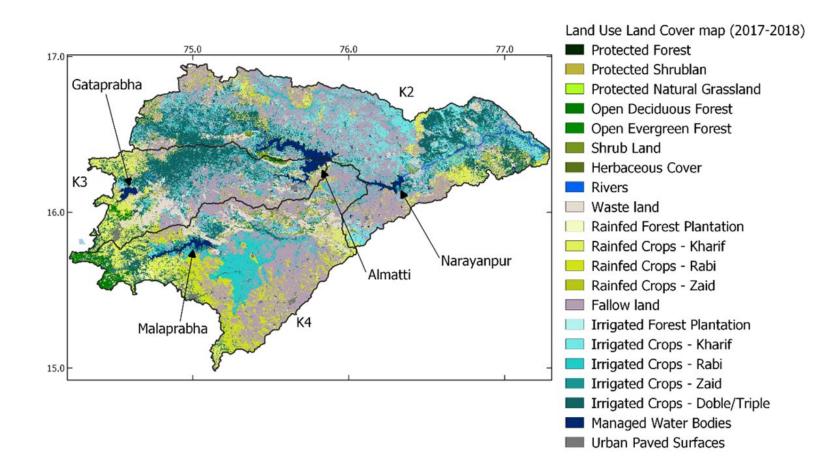

Data Collection

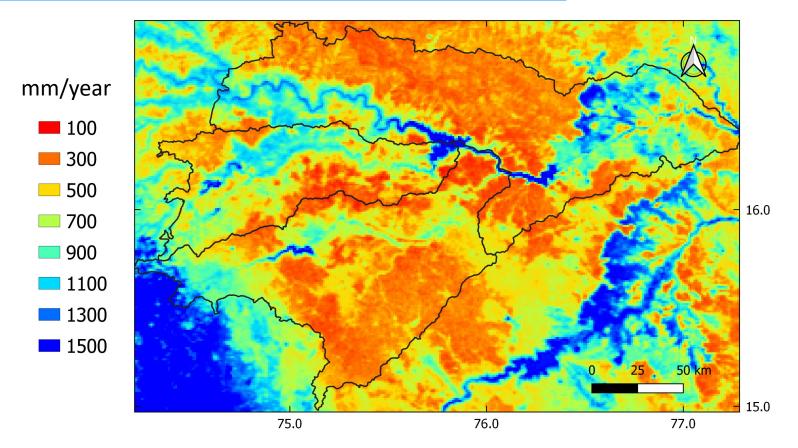
Dataset	Start	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Temporal resolution	Used
		1	1	1	1	1	Prec	ipitatio	n	1	1	1	1	1		·
CHIRPS	1981														monthly	Х
CHIRPS	2007														daily	Х
GPM v5	2014														monthly	
GPM v6	2007														monthly	
GPM v6	2007														daily	
TRMM	1998														monthly	
	•						Evapotr	anspira	tion							
SSEBop	2003														monthly	Х
ALEXI	2003														monthly	
CMRSET	2003														monthly	
ETens	2003														monthly	
SEBS	2000														monthly	
							Oth	er data								
ASCAT (SWI)	2007														daily	
LAI	2007														8-daily	Х
GPP	2007														8-daily	
NPP	2007				Data i	is currei	ntly una	vailable	e due to	unexpe	ected er	rors in t	the inpu	it data	yearly	
DMP	2014														decadal	Х
GDMP	2014														decadal	Х
ET reference	2007														monthly	Х
ET reference	2007														daily	
GRACE	2003														monthly	
GLDAS gs	2007														monthly	
GLDAS gbs	2007														monthly	


Data Validation and Analysis


Monthly average Precipitation [CHIRPS], K2

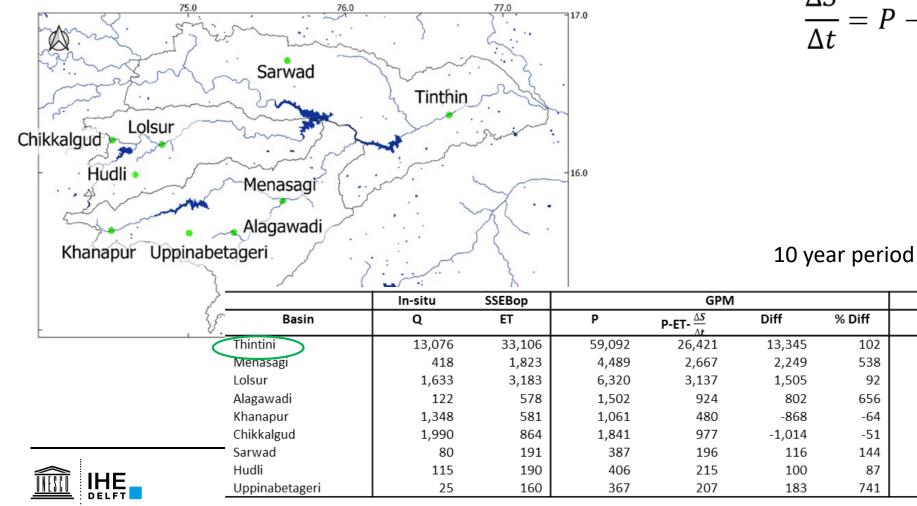
CHIRPS data validated with 139 stations


	Dataset Average NS		Average Pearson	Average Relative	Average RMSE
			Coefficient	Bias	
	CHIRPS	0.32	0.73	0.93	52.67
_	TRMM	0.45	0.77	0.68	71.12
	GPM	0.48	0.78	0.71	62.88


The 3 sub-basins are highly modified by human activity

2010 → 2018 Cultivated area –16.5% (especially double and triple crops)

Spatial Distribution of Water Consumption


RS-based evapotranspiration: SSEBop (global ET product)

SSEBop was the only RS open access product available in recent years in India at the time of this study Low values of ET (100-300 mm/yr) seems too low for this climatic zone (up to 600 mm/yr rainfall) → Additional validation required!

Data Selection: RS yearly water balance v.s. in-situ measurements

We need to know the physical boundaries of the watersheds, and inflows and outflows Nine stations:

$$\frac{\Delta S}{\Delta t} = P - ET - Qout + Qin$$

CHIRPS

P-ET- $\frac{\Delta S}{\Lambda t}$

13,950

1,943

969

230

295

678

200

98

57

Ρ

46,620

2,791

5,126

807

876

391

288

218

1,543

Diff

873

551

311

108

-1,053

-1,312

120

-17

33

% Diff

132

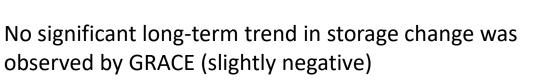
19

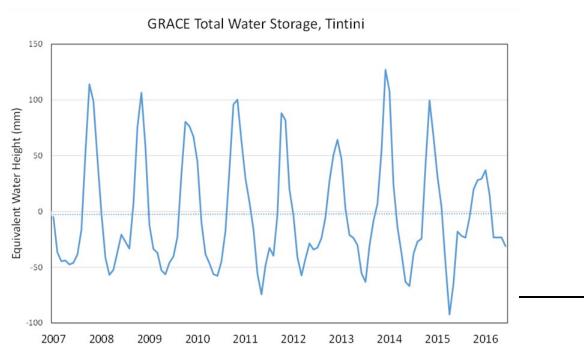
88

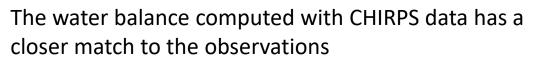
-78

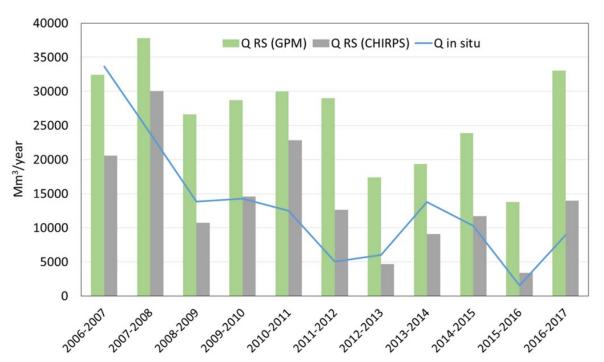
-66

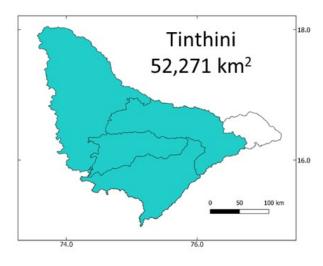
149

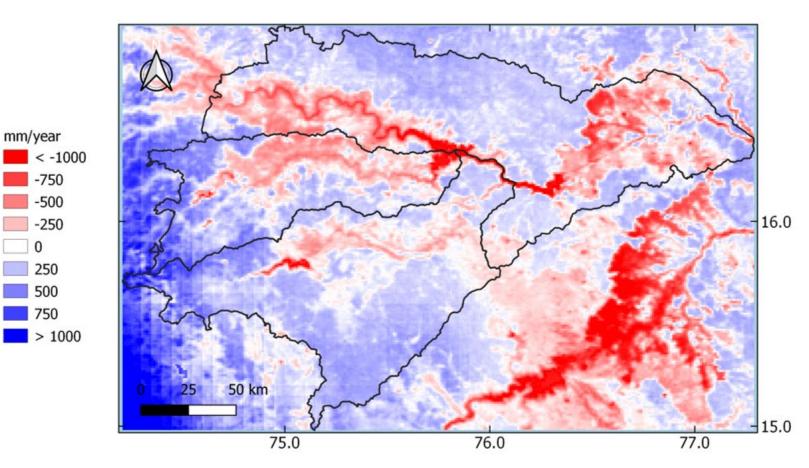

-15


133


717


More in-depth analysis at Tinthini station

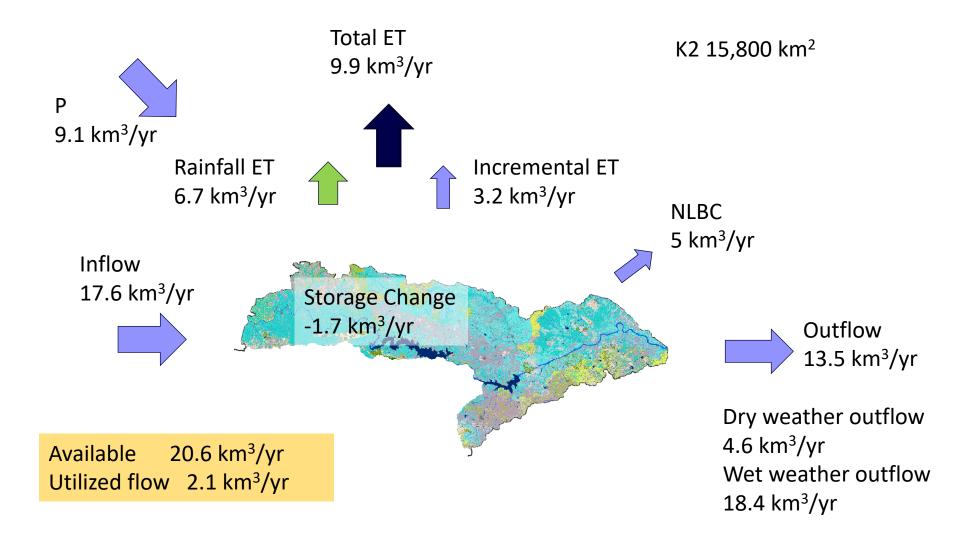

Largest watershed



Water Yield (P-ET)

P > ET → runoff generation (blue) P < ET → net consumption (red)

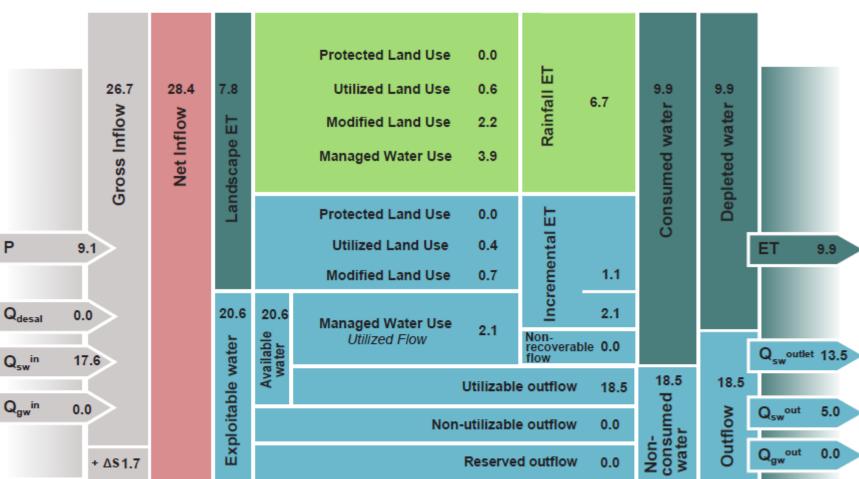
Most of the **runoff** is generated in the **upstream mountainous areas**


Agricultural areas and reservoirs are net consumers

The long-term average of P-ET <0 in K2 and P-ET>0 in K3 and K4

 \rightarrow K3 and K4 are generating water, part of which is then consumed in K2

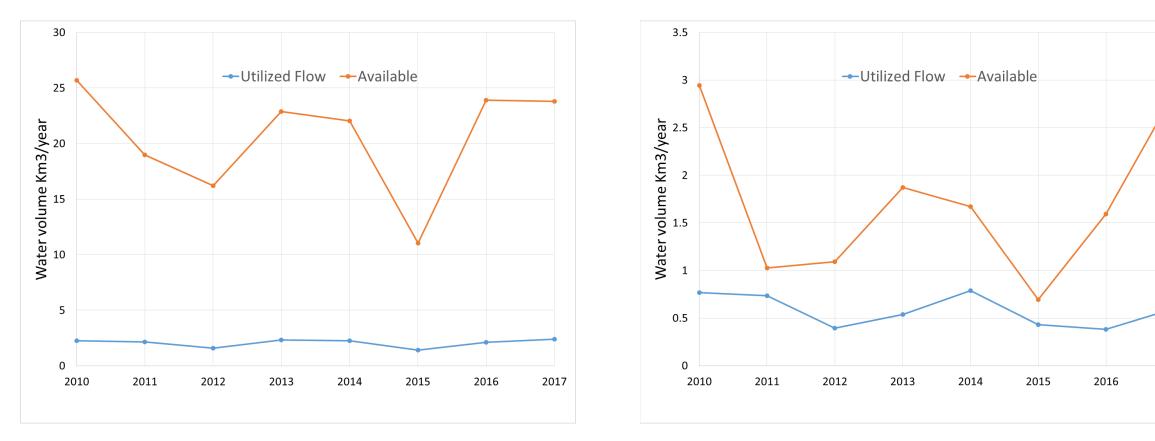
Annual Average Water Balance in K2 2010/2011 – 2017/2018



Sheet 1: Resource Base (km3/year)

Basin: K2 Period: 2010-2017

Ρ

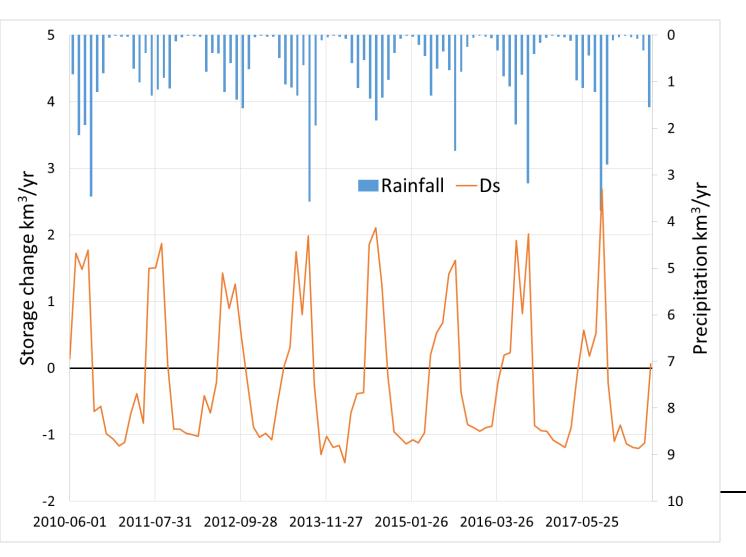


K2: the available water in the basin is 8-10 times the utilized flow

K4: the available water in the basin is 2-3 times the utilized flow

High water availability because of inflows.

The available water has a high inter-annual variability (11-26 km³/year)

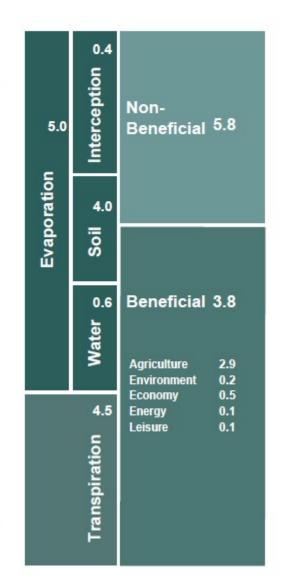

During dry years most of the available water is utilized

2017

K2: storage change monthly scale

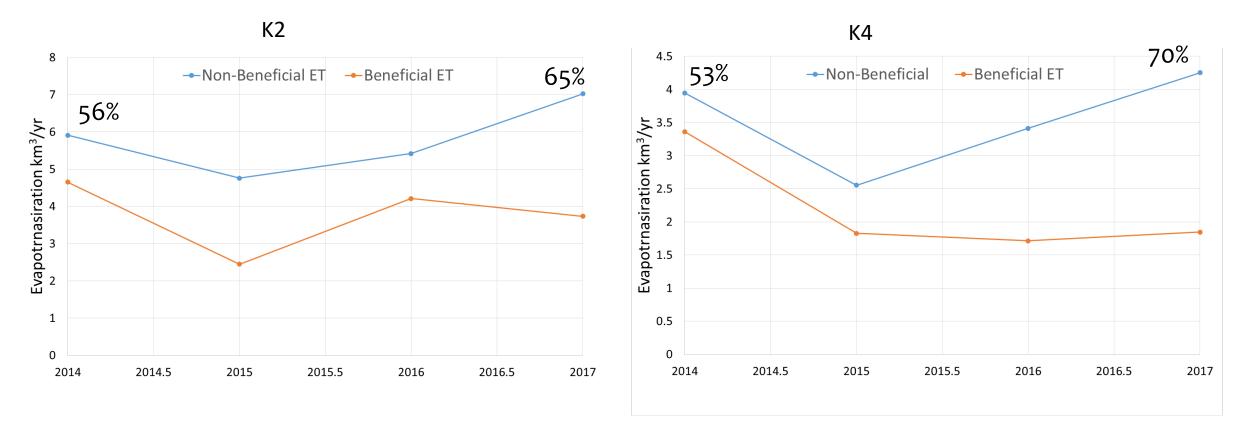
K2 as the other two basins has a strong seasonal variability \rightarrow monsoon

Delicate balance



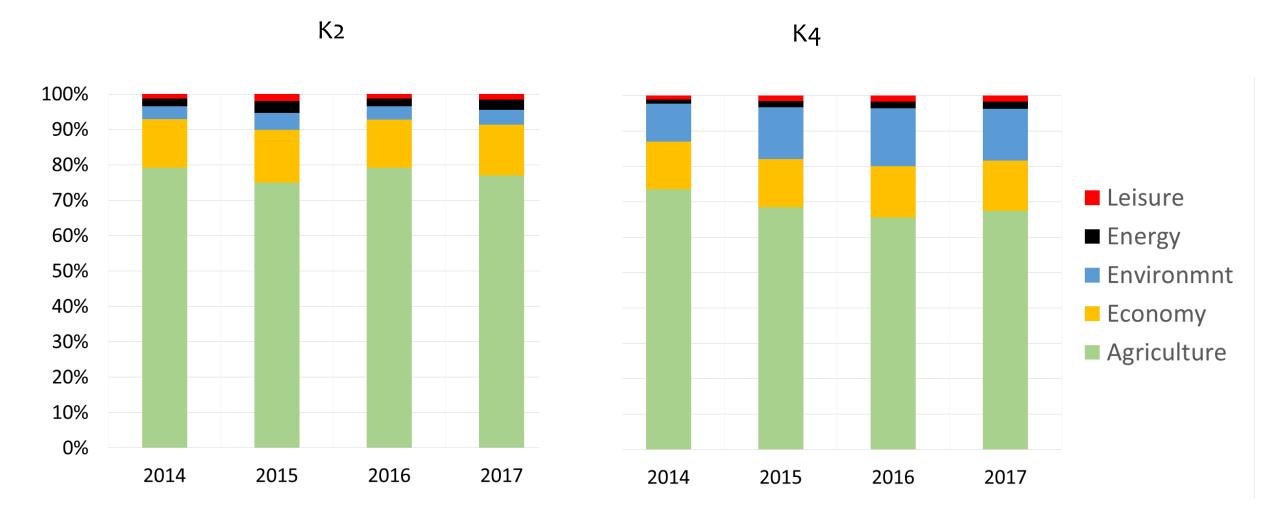
Sheet 2: Evapotranspiration (km3/year)

Period: 2014-2017 Basin: K2



		ET T		ET	т	
9.5	Non- manage- able 0.0	Protected Land Use 0.0 0.0	Forests Shrubland Natural grasslands Natural water bodies Wetlands Glaciers Other	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Total evapotranspiration	Manage- able 0.9	Utilized Land Use 0.9 0.5	Forests Shrubland Natural grassland Natural water bodies Wetlands Other	0.0 0.2 0.0 0.2 0.0 0.5	0.0 0.1 0.0 0.1 0.0 0.3	
tal evapo		Modified Land Use 2.8 1.3	Rainfed crops Forest plantations Settlements Other	0.7 0.0 0.0 2.0	0.4 0.0 0.0 0.9	
To	Managed 8.6	Managed Water Use	-upon Banaged water bodies Residential Industry Other	5.2 0.5 0.2 0.0 0.0	2.7 0.0 0.1 0.0 0.0	
		5.8 2.8	Livestock & husbandry Power and Energy Other	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	

Beneficial and non-beneficial ET inter-annual variability



Non-beneficial fraction is increasing mainly due to increased soil water evaporation

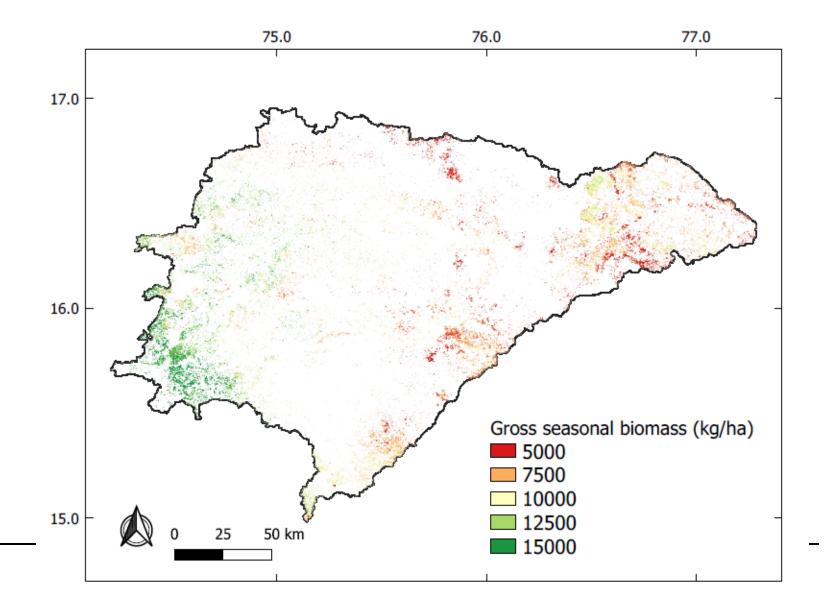
 \rightarrow More efficient irrigation techniques should be considered

The agricultural sector is responsible for 80% of the beneficial consumption

Biomass production and biomass water productivity

K2						
2015-2016	Kharif	Rabi	Zaid	Double/Triple Crop	Forest Plantation	
ET	0.77	0.19	0	1.95	0.01	km3/yr
GBP	3492	4917	569	7401	4293	kg/ha
GDP	5492	4917	209	7401	4295	ку/па
GBWP	1.10	5.50	0.67	1.48	1.69	kg/m3

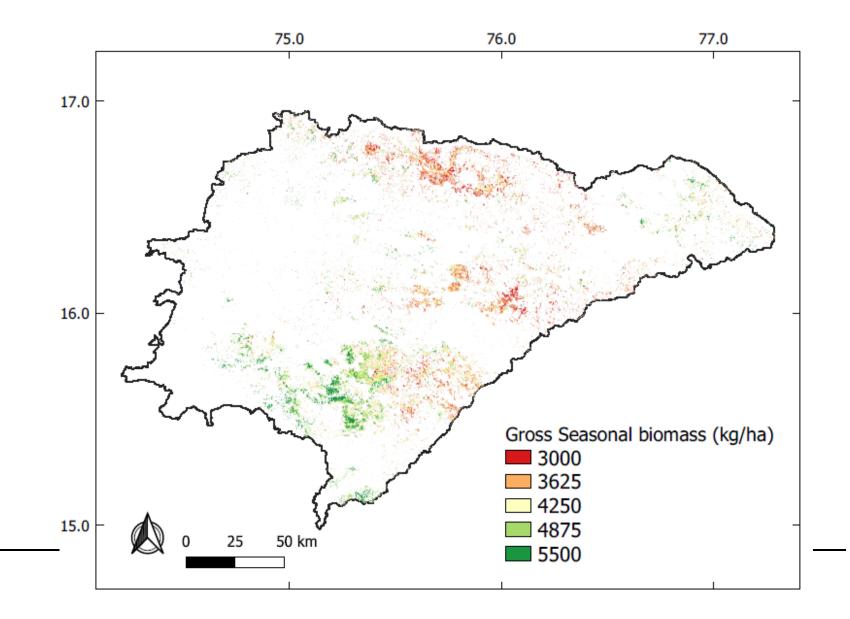
Kharif	Rabi	Zaid	Double/Triple Crop	Forest Plantation	
0.77	0.19	0	1.95	0.01	km3/yr
4582	7354	334	7279	5088	kg/ha
1.56	3.33	0.94	1.70	2.27	kg/m3
	0.77 4582	0.77 0.19 4582 7354	0.77 0.19 0 4582 7354 334	0.77 0.19 0 1.95 4582 7354 334 7279	0.77 0.19 0 1.95 0.01 4582 7354 334 7279 5088


K2						
2017-2018	Kharif	Rabi	Zaid	Double/Triple Crop	Forest Plantation	
ET	0.77	0.19	0	1.95	0.01	km3/yr
GBP	3467	7757	624	7535	4656	kg/ha
GBWP	1.09	3.00	0.73	1.38	1.65	kg/m3

Biomass production and biomass water productivity

Kharif 2015-2016 (May \rightarrow October)

Higher productivity zones in the upstream areas → water availability



Biomass production and biomass water productivity

Rabi 2015-2016 (Nov → Apr)

Similar patterns → K4 is more productive Than the other two basins

Conclusions and recommendations

- We have analysed three basins (K2, K3, K4) using RS data in a 8 year period
 2010-2011 → 2017-2018
- The three basins are highly modified by human activity (agriculture)
- Monsoon climate and high spatial variability of rainfall
- The upstream areas generate most of the runoff while agriculture and reservoirs are net consumers
- P-ET is negative in K2 and positive in K3 and K4
 → K3 and K4 generate water, part of which is then consumed in K2

Conclusions and recommendations

- The three basins are highly dependent on upstream flows (72% of the available water resources in K2). Evaluation of scenarios where inflows are reduced should be tested.
- There is a strong seasonal variability due to the monsoon climate. The storage change (both surface and groundwater) should be carefully monitored at monthly/seasonal scale.
- The amount of non-beneficial water consumption is high in all basins (up to 70% of the total ET) → unproductive soil evaporation. Measures limiting soil evaporation should be considered.

Conclusions and recommendations

• Additional validation and a field survey should be carried out for evaluating the WA+ results and for improving accuracy of the land use map.

Thank you for your attention!

Website: https://wateraccounting.un-ihe.org/

> Welcome

> Background
 > Symposium 2022
 > WA+ framework
 > Projects
 > Publications
 > Capacity Building
 > IHE WA+ team

Welcome to Water Accounting Plus

You can now start with the new MOOC on Water Accounting and Auditing!

Find more information and how to enroll here

Open Source software on GitHub: github.com/wateraccounting

()	wateraccounting	Sign up 🗮
	Repositories 14 Packages People Projects	
War	Water Accounting Organization account of the Water Accounting group at IHE Delft P http://www.wateraccounting.org/	
Find a repository	GitHub is home to over 50 million developers working together. Join gour own development teams, manage permissions, and collaborat	
IHEWAengir ● Python 책 GP	1e	Top languages Python Jupyter Notebook TeX HTML
IHEWAcolled IHE WaterAccount ● HTML 쇼 GPL		People > This organization has no public members. You must be a member to see who's a part of this organization.
productivity and i	s on WaPOR based monitoring of water rrigation performance indicator thon-3 indicator irrigation wapor	

References

FAO 2018. Water Accounting for Water Governance and sustainable development (http://www.fao.org/3/I8868EN/i8868en.pdf)

Batchelor, C., Hoogeveen, J., Faurès, J.M. and Peiser, L., 2017. Water accounting and auditing. A sourcebook. FAO Water Reports (FAO) no. 43.

FAO and IHE Delft, 2019. Water Accounting in the Litani River Basin. FAO Water Accounting Series report, Rome, Italy (http://www.fao.org/3/ca6679en/ca6679en.pdf)

Steduto, P., Faurès, J.M., Hoogeveen, J., Winpenny, J. and Burke, J., 2012. Coping with water scarcity: an action framework for agriculture and food security. FAO water reports, 16, p.78.

UN Water, Global Water Partnership (2007) UN-Water and Global Partnership (GWP) Roadmapping for Advancing Integrated Water Resources Management (IWRM) Processes.

Mul et al., 2022. A review of Water Accounting Frameworks: for who, what and why? In publication

Perry, C., 2007. Efficient irrigation; inefficient communication; flawed recommendations. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 56(4), 367-378.

Molden, D. 1997. Accounting for water use and productivity, SWIM paper 1, International Water Management Institute, Colombo, Sri Lanka.

